首页> 外文OA文献 >Bifurcations with imperfect SO(2) symmetry and pinning of rotating waves
【2h】

Bifurcations with imperfect SO(2) symmetry and pinning of rotating waves

机译:具有不完美的sO(2)对称性和旋转波的钉扎的分叉

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Rotating waves are periodic solutions in SO(2) equivariant dynamical systems. Their precession frequency changes with parameters and it may change sign, passing through zero. When this happens, the dynamical system is very sensitive to imperfections that break the SO(2) symmetry and the waves may become trapped by the imperfections, resulting in steady solutions that exist in a finite region in parameter space. This is the so-called pinning phenomenon. In this study, we analyse the breaking of the SO(2) symmetry in a dynamical system close to a Hopf bifurcation whose frequency changes sign along a curve in parameter space. The problem is very complex, as it involves the complete unfolding of high codimension. A detailed analysis of different types of imperfections indicates that a pinning region surrounded by infinite-period bifurcation curves appears in all cases. Complex bifurcational processes, strongly dependent on the specifics of the symmetry breaking, appear very close to the intersection of the Hopf bifurcation and the pinning region. Scaling laws of the pinning region width and partial breaking of SO(2) to Zm are also considered. Previous as well as new experimental and numerical studies of pinned rotating waves are reviewed in the light of the new theoretical results.
机译:旋转波是SO(2)等变动力学系统中的周期解。它们的进动频率随参数而变化,并且可能会更改符号,并传递零。发生这种情况时,动力学系统对破坏SO(2)对称性的缺陷非常敏感,并且波动可能会被这些缺陷捕获,从而导致稳定解存在于参数空间的有限区域中。这就是所谓的钉扎现象。在这项研究中,我们分析了在霍普夫分支附近的动力学系统中,SO(2)对称性的破坏,该分支的频率变化沿参数空间中的曲线符号。这个问题非常复杂,因为它涉及到高维数的完全展开。对不同类型缺陷的详细分析表明,在所有情况下都会出现被无限周期分叉曲线包围的钉扎区域。复杂的分叉过程在很大程度上取决于对称性破坏的细节,看起来非常接近霍普夫分叉与钉扎区域的交点。还考虑了钉扎区域宽度的缩放定律和SO(2)到Zm的部分破坏。根据新的理论结果,回顾了固定旋转波的先前以及新的实验和数值研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号